大模型交叉研讨课目录

链接: 大模型交叉研讨课

课程安排

第一部分:大模型基础

  • 第一节:自然语言处理基础知识 【6月27日】
  • 第二节:神经网络基础知识 【6月29日】
  • 第三节:Transformer与预训练模型 【7月1日】

第二部分:大模型技术

  • 第四节:Prompt Tuning, Delta Tuning 背景以及技术【7月4日】
  • 第五节:BMInf, BMTrain,BMCook相关背景和技术和使用【7月6日】
  • 第六节:基于大模型的文本理解与生成解决方案【7月8日】

第三部分:大模型交叉应用

  • 第七节:大模型X生物医学 【7月11日】
  • 第八节:大模型X法律智能 【7月13日】
  • 第九节:大模型X脑科学 【7月15日】


Transformers for NLP 第一章

第一章 What are Transformers?

工业4.0

这一章,作者认为Transformers 是工业4.0这个观点进行了阐述。

An Industry 4.0 project manager can go to OpenAI’s cloud platform, sign up, obtain an API key, and get to work in a few minutes. A user can then enter a text, specify the NLP task, and obtain a response sent by a GPT-3 transformer engine. Finally, a user can go to GPT-3 Codex and create applications with no knowledge of programming. Prompt engineering is a new skill that emerged from these models.

首先是云平台,然后提供API访问 包括像Codex都是,只要大模型提供了云API 都算是工业4.0 。 工业4.0 其实是数据驱动的人工智能型的网络化“智能工厂”,确实现在类似的API,其实还没有进入工业领域。

围绕现在transformers这个模型,其实建立起来的是foudation models,算是模型基础设施,后面这种基础设施也只有大厂会来做。

AI 的新范式,感觉是以基础大模型+微调 组成的。 这确实算是一种新的颠覆。

生成代码的Codex

输入:

输出的代码:

工业4.0 AI的角色

  1. API – 大模型
  2. 库 – 开源库
  3. 训练和微调 – 提供计算,训练和微调服务
  4. 开发技巧 – 模型落地

Transformers for NLP笔记

版本:Transformers for Natural Language Processing_Build, train, and fine-tune deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, and GPT-3 2nd Edition

官方代码: https://github.com/Denis2054/Transformers-for-NLP-2nd-Edition

目录:

  • Chapter 1: What are Transformers?
  • Chapter 2: Getting Started with the Architecture of the Transformer Model
  • Chapter 3: Fine-Tuning BERT Models
  • Chapter 4: Pretraining a RoBERTa Model from Scratch
  • Chapter 5: Downstream NLP Tasks with Transformers
  • Chapter 6: Machine Translation with the Transformer
  • Chapter 7: The Rise of Suprahuman Transformers with GPT-3 Engines
  • Chapter 8: Applying Transformers to Legal and Financial Documents for AI Text Summarization
  • Chapter 9: Matching Tokenizers and Datasets
  • Chapter 10: Semantic Role Labeling with BERT-Based Transformers
  • Chapter 11: Let Your Data Do the Talking: Story, Questions, and Answers
  • Chapter 12: Detecting Customer Emotions to Make Predictions
  • Chapter 13: Analyzing Fake News with Transformers
  • Chapter 14: Interpreting Black Box Transformer Models
  • Chapter 15: From NLP to Task-Agnostic Transformer Models
  • Chapter 16: The Emergence of Transformer-Driven Copilots